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Spiral waves in period-doubled and other complex-oscillatory media possess line defects across which the
phase of the oscillation changes by multiples of 2�. For such systems, the concept of a splay state, introduced
for coupled oscillator systems, is generalized to an Archimedean spiral splay field. In this splay field a spiral
wave in a two dimensional space is considered to be a special splay state where spatial points having identical
phase space orbits take phases determined by the Archimedean spiral on which they lie. Using the
Archimedean spiral splay field, an equation that determines the shape of the line defect is derived.
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I. INTRODUCTION

Spiral wave patterns are often observed in excitable and
oscillatory media and appear in a variety of physical contexts
�1–4�. Early studies of the Belousov-Zhabotinsky �BZ� reac-
tion found spiral wave patterns �5,6�. Spiral waves are fre-
quently observed in surface catalytic oxidation reactions
such as CO oxidation on Pt �7�. The aggregation stage of the
slime mould dictyostelium discoideum, where the chemical
signaling is through periodic waves of cAMP, involves spiral
patterns. Spiral Ca+2 waves are seen in xenopus laevis oo-
cytes and pancreatic � cells �8�. The appearance and breakup
of electrochemical spiral waves are believed to be respon-
sible for various types of cardiac arrhythmias �9�.

In oscillatory media, generic features of spiral wave dy-
namics are usually described in terms of the complex
Ginzburg-Landau equation �CGLE�, the amplitude equation
that is generally applicable in the vicinity of the Hopf bifur-
cation point �3,4�. However, spiral waves can also exist in
complex-oscillatory media where the local dynamics can ex-
hibit period-doubled or even chaotic behavior �10,11�. In
such complex-oscillatory regimes, the new feature that ap-
pears is the existence of a line defect across which the phase
of the oscillation changes by 2� �12,13�. Spiral line defects
have been observed and studied experimentally in the BZ
reaction under oscillatory conditions �14–17�.

Line defects are easily observed in reaction-diffusion
systems

�tc�r,t� = R�c�r,t�� + D�2c�r,t� , �1�

in parameter regimes where the local chemical kinetics, de-
scribed by the reaction rate R�c�r , t��, undergoes a period-
doubling bifurcation to chaos. A line defect in the
Willamowski-Rössler �WR� reaction-diffusion system �18�,
with equal diffusion coefficients D�D=DI� for all species
and period-2 local dynamics, is shown in the right panel of
Fig. 1. While the local dynamics is period-2 in the bulk of
the medium, it is period-1 on the line defect. For comparison,
a spiral wave for this system when the local dynamics is

period-1 is shown in the left panel of this figure �19�.
The WR model involves three chemical

concentrations, c�r , t�= �cx ,cy ,cz� and the corresponding
reaction rates are Rx=k1cx−k−1cx

2−k2cxcy +k−2cy
2−k4cxcz

+k−4 ,Ry =k2cxcy −k−2cy
2−k3cy +k−3, and Rz=−k4cxcz+k−4

+k5cz−k−5cz
2. The visualization of the line defect is achieved

by computing the scalar field

�cz�r,t� =
1

�
�

0

�

�cz�r,t + t�� − cz�r,t + � + t���dt� �2�

for �=T /2, where T is the period of the period-2
spiral wave, and converting it to binary form �15�. Since
c�r , t�=c�r , t+T /2� for the period-1 points on the line defect,
while this relation does not apply for other spatial points
with period-2 dynamics, the time-average method is easy to
implement in order to locate the line defects in the medium.

A line defect is similar to a kink in a bistable system and
denotes the location in the medium where the phase of the
local oscillation changes rapidly by multiples of 2� due to
the broken rotational symmetry. The variation of the concen-
tration field across line defect can be monitored through the
computation of a similarity function S��� devised to study
phase synchronization �20�. Taking, for instance, the cz con-
centration field, we let cz

�2� be the concentration at a point a
distance � along the normal to the line defect and cz

�1� be the
concentration at a far-field reference point sufficiently far
from the spiral tip and not near the boundary. The similarity
function is defined as following function of the time average
of the difference of these concentrations:

S���� = � ��cz
�2��t + �� − cz

�1��t��2	
���cz

�1��2�t�	��cz
�2��2�t�	�1/2
1/2

. �3�

Defining ���� to be the lag time � corresponding to the mini-
mum of S����, i.e., ����=S(����)=min�S����, we obtain the
information needed to describe the behavior in the vicinity of
a point on the line defect. As an illustration, Fig. 2�a� plots
���� for k2=1.510. We see that as one moves away from a
point on the line defect ���� drops sharply to zero since the
dynamics rapidly changes from period-1 to period-2. Thus,
the small region �interfacial zone� containing the line defect
where the phase rapidly changes by 2� can be determined
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from such an analysis. The corresponding time lag ���� and
a quantity T���= �����−��−���, where �¯ � denotes the
value of the function modulo T, are plotted versus � in Fig.
2�b�. The period of the oscillation is T. The jumps in these
functions across the line defect are evident in the figure.

The spiral waves in the reaction-diffusion systems we
consider are Archimedean spirals. In Fig. 3�a� the simulation
results in Fig. 1�a� �points� are fit to an Archimedean spiral
�thin solid line� using the method described in Ref. �21�. The
simulation points are taken from a contour line in the coor-
dinate plane for cx=10 and cy �10, on the upper portion of
the Poincare section denoted by a dashed line in Fig. 3�b�.
Archimedean spirals have been studied experimentally and
in models of the BZ reaction �21,22�. The Archimedean
structure of the spiral field places strong restrictions on the
dynamical behavior and implies a relationship between the
geometrical structure in space and the dynamical behavior in
time. Using these relationships we show that the form of line
defect can be determined.

II. ARCHIMEDEAN SPIRAL SPLAY FIELD

The splay state is a self-organized structure in a spatially-
distributed medium in which all local oscillators execute

identical periodic trajectories but with different phases. Such
splay states have been extensively investigated in coupled-
oscillator systems �23–25�. The phase difference between os-
cillators can be the same �conventional splay state� �23,24�,
or functionally controlled �generalized splay state� under
weak coupling �25�. Splay states have been observed in
physical processes, such as conductance in Josephson-
junction arrays �23�.

It is well known from studies of the CGLE that the core
region that surrounds the topological defect that forms the
center of a spiral wave is very small and that outside the core
the local dynamics asymptotically tends to a limit cycle at-
tractor with harmonic character �3�. Consequently, the spiral
wave may be considered to be a generalized splay state field
where the local phase space orbits at all spatial points, except
those in the core region, have identical structure but differ in
their phases. Similar considerations apply to complex-
oscillatory media where the local dynamics has a period-
doubled or even chaotic character. In Fig. 3�a�, the core re-
gion around the spiral tip is indicated by a small disk. The
disk diameter is approximately 5, in a pattern with linear a
dimension of 256. The local phase space orbits tend to an
identical, but not harmonic, local limit cycle attractor as one
moves away from the core �see Fig. 3�b��. In Fig. 3�c� we
plot the magnitude of cy on the Poincaré section �dashed line
in Fig. 3�b�� versus the distance r from the spiral tip. The
limiting value of cy is rapidly approached with increasing r.
Thus, for such complex-oscillatory spiral wave states we can
view the system as being in an Archimedean-spiral general-
ized splay state with the exception of a small core region.

Given the Archimedean spiral structure, outside the core
region, the phase of any point �or the lag time between any

FIG. 1. �Color online� Snapshots of the cz�r , t� field showing
spiral waves in Willamowski-Rössler reaction-diffusion system for
two parameter values: k2=1.430 �period-1 regime� �a� and 1.510
�period-2 regime� �b�. The other parameters were fixed to be k1

=31.2,k−1=0.2,k−2=0.1,k3=10.8,k−3=0.12,k4=1.02,k−4=0.01,k5

=16.5, and k−5=0.5. �a� There is single defect point �spiral tip�,
indicated by a large star, for the period-1 spiral wave. �b� The
period-2 spiral has a line defect, which is superimposed on the
pattern.

FIG. 2. �Color online� �a� Plot of ���� versus � for k2=1.510
locating a point on the line defect and showing the width over
which the phase changes rapidly by 2�. �b� Plots of ���� and T���
versus � that appear in the analysis of the similarity function S����.

FIG. 3. �Color online� �a� Fit of an Archimedean spiral to the
simulation results in Fig. 1�a� at one time instant for k2=1.430.
Around the spiral tip, the very small core region is shown as a solid
disk. �b� Phase space orbits in the �cx ,cy� plane, from smallest to
largest, are shown at spatial points r=1, 2, 3, 4, 5, 10, and 100
along a radius vector, respectively. The dashed line denotes a partial
Poincaré section, cx=10,cy �10. �c� Plot of cy on the Poincaré sec-
tion versus the distance r shows that the core region is very small,
rc�5 and that the approach to the asymptotic local attractor is
rapid.
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two spatial points� can be determined. For instance, an
Archimedean spiral �solid line� at time t is shown Fig. 4. A
point A on this spiral is given by

rA =
P

2�
�	A − 	A0� , �4�

where P�P=2� /
� is the pitch, rA and 	A�+��	A�0� are
polar coordinates of point A, and 	A0 is the initial angle with
respect to a reference axis that characterizes this
Archimedean spiral. Counterclockwise is chosen as the posi-
tive direction.

Similarly, the point B in this figure lies on another
Archimedean spiral �dashed line� at time t��t�� t� and its
equation is

rB =
P

2�
�	B − 	B0� , �5�

where 	B0�	B0�	A0� is a different initial phase that charac-
terizes the dashed spiral. Since points A and B lie along the
same radial vector they have identical polar angles �	B=	A�.
We have assumed that the spiral waves are rotating inwardly,
which is the most commonly observed case in models of
complex oscillatory media �12�. The only difference in the
local dynamics between points B and A is the lag time �tBA
that arises from their different initial phases:

�tBA = �	B0 − 	A0�
T

2�
= �rA − rB�

T

P
. �6�

More generally, for any point in the domain, say C, which
has a polar angle 	 that is different from that of A, we can
obtain an expression for the lag time between C and A as

�tCA = rA − �rc −
P

2�
	
� T

P
= �rA +

P

2�
	
 − rc� T

P
,

�7�

where we have used the fact that C and B have identical
phases.

The Archimedean spiral splay field analysis is approxi-
mate and will be accurate if the spatial point of interest is
outside the core region. Nevertheless, since the core region is
small and often we are interested in the dynamical behavior
far from this region, the Archimedean splay field model pro-
vides a convenient and useful means to describe the structure
of spiral waves in complex-oscillatory media. Previously, a

simple Archimedean spiral phase matching method was suc-
cessfully employed to explore the structure of cellular pat-
terns in the 2D CGLE �26�.

III. LINE DEFECT STRUCTURE

The Archimedean spiral splay field model can be used to
construct an equation for the line defect. The top part of Fig.
5 shows a schematic representation of the line defect �heavy
solid line� in Fig. 1 for a system with period-2 oscillatory
dynamics. At a point A on the line defect, the local dynamics
is period-1. In the vicinity of the line defect, there is a narrow
interfacial zone, determined by the ���� function plotted in
Fig. 2, that connects the period-2 regions on either side of the
line that differ in phase by 2�. The two light solid lines on
either side of the line defect delimit this zone. Without loss
of generality, the two points B and C, as shown in the lower
part of Fig. 5, are at the same distance � away from the point
A. The line BC is perpendicular to the tangent to the line
defect at point A, indicated by a dashed arrow. We denote the
lengths of the line segments as AB=AC=�. A segment of
Archimedean spiral curve through A is shown as a thin solid
line and the spiral tip, the rotation center, is denoted by O.

On the basis of the Archimedean phase analysis, the lag
time T��� between points B and C �note that C is equivalent
to point C� under rotation by a counterclockwise angle of
2�− �	1+	2�� is

T��� = rC + P
2� − �	1 + 	2�

4�
− rB� T

P

= �1

2
+

rC − rB

P
−

	1 + 	2

4�

T . �8�

Points B and C are taken to lie in the period-2 region where

FIG. 4. �Color online� Schematic picture of Archimedean spirals
at times t �solid line� and t� �dashed line� with points A ,B and C
used in the splay field analysis.

FIG. 5. Schematic picture showing the defect zone surrounding
the line defect and the geometry used in the calculation. Upper part:
The line defect is denoted by a heavy line and while the zone where
the phase changes rapidly is indicated by light solid lines. The re-
gion around point A on this line, indicted by a dashed box, is mag-
nified in the lower part of the figure. The perpendicular distance
between the two thin lines is 2� and AB=AC=�. Lower part: In the
magnified region in the lower part of the figure, the dashed arrow
indicates the tangent direction to the line defect at point A. The
angles are �=�DAC=�BAO and �=� /2+�=�DAE.
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the Archimedean spiral splay field approximation is valid.
Assuming that rA�rA=r� ,rB ,rC1 and 	1 ,	2�1, we have

rC − rB � 2� cos � ,

	1 + 	2 �
2�

r
sin � , �9�

where �=�DAC=�BAO. Hence, we find

T��� = �1

2
+

2� cos �

P
−

2� sin �

4�r

T . �10�

Using the fact that the solution X of the equation a sin X
+b cos X=c where a ,b, and c are constants can be written as
sin�X+	�=c�a2+b2�−1/2 and 	=arctan�b /a�, we obtain

� = arctan�4�r

P

 − arcsin� T���/T − 1/2

2���1/P�2 + �1/4�r�2
 .

�11�

From this equation it follows that, ��r�=�DAE, the angle
between the polar and tangent directions of the line defect at
A is

��r� =
�

2
+ � =

�

2
+ �1 − �2, �12�

where

�1 = arctan�4�r

P

 ,

�2 = arcsin� �

2��1/P�2 + �1/4�r�2
 . �13�

The equality between � and � /2+� is independent of
shifts in the direction of the line BC around A �clockwise
or counterclockwise�. In this equation ����, defined by
�= �T��� /T−1/2� /�, plays the role of an order parameter.
This quantity is plotted in Fig. 6 versus �. We see that while
���� varies rapidly within the interfacial zone surrounding
the line defect, it tends to a nearly constant plateau value
outside the narrow zone. For the chosen parameters, we find
T=1.919 and the asymptotic value ��0.0036. Thus, the for-

mula for ��r� is independent of � for � values outside the
interfacial zone.

Given these relations, an equation for the line defect can
be constructed. In general, if � is the angle between the polar
and the tangent directions of any curve expressed in polar
coordinates �r ,	�, we have tan �=r /r�, where r�=dr /d	.
Taking the curve to be the line defect we obtain

	b = 	a + �
a

b 1

r
tan ��r�dr , �14�

where 	a and 	b are polar angles at two points a and b on the
line defect. Thus, given the positions of any point a on the
line defect and the spiral tip, we can determine the location
of any other point b on the line defect by performing the
integral in Eq. �14� using the knowledge of the functional
form of ��r�.

Qualitative information on the form of the line defect can
be deduced from a knowledge of the limiting behavior of
��r� for large and small values of r. As r goes infinity,
�1��2� asymptotically approaches � /2 �arcsin��P /2��, and
��r→����−arcsin��P /2�. Note, arcsin��P /2��0 and is
small. Thus, it is quite easy to see why the line defect ap-
pears to be an approximately straight line whose tangent vec-
tor does not point to the spiral tip. As r approaches zero,
��r→0��� /2 as both �1 and �2 go to zero. As a result,
there will be a large change in the tangent direction for
points on the line defect that lie close to the spiral tip.

In Fig. 7�a�, the simulation results for the line defect
�open circles� are compared with the theoretical prediction of
Eq. �14� �solid line� for k2=1.510 where the pitch of the
spiral is P=33.5 and �=0.0036. Figure 7�b� shows a mag-
nification of the square in Fig. 7�a� �about only one thirty-
sixth the size of �a�� and demonstrates that the Archimedean
model can predict the structure of the line defect close to the
core region.

Thus far we have considered parameter values of the
WR model for which the dynamics at spatial points within
the defect zone is periodic. As k2 increases more complicated
dynamical behavior is observed �16�. Figure 8�a� for
k2=1.540 shows the cz�r , t� field at one time instant. It has
the same apparent spatially period-2 structure as that in Fig.

FIG. 6. The determination of the magnitude of � through the
similarity function computation at k2=1.510. ����= �T��� /T
−1/2� /�.

FIG. 7. �Color online� �a� Comparison of the simulation results
for the line defect for k2=1.510 �open circles� from Fig. 1�b� with
the prediction of Eq. �14� �solid line�. �b� A magnification of a
portion of the curve in panel �a�, indicated by a square, showing the
comparison near the spiral tip.
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1�b� for k2=1.510. Figure 8�c� plots the magnitude of ����
of the similarity function �Eq. �3��, computed from a long
time average, versus � normal to the defect zone and shows
that the defect zone has a structure similar to that depicted in
Fig. 2.

A magnification of a small portion of Fig. 8�a� is shown in
panel �b� where spatial points a ,b ,c, and d in the vicinity of
the defect region are indicated. The time series at these
points are shown in Fig. 9. Points inside the defect zone
execute quasiperiodic motion interspersed with short-time
segments of approximately period-1 behavior as indicated by
the arrows in Figs. 9�a�, 9�b�, and 9�c�. The time interval
between two neighboring arrows in the time series is ap-
proximately constant for points, like point a, on the theoret-
ical midline of the defect zone �see Fig. 9�a��. The time in-
terval becomes more irregular, a short �long� segment
followed by a long �short� segment, when the spatial point is
displaced from the midline �compare Fig. 9�b� with 9�a��.
Points having the same perpendicular distance from the mid-
line have identical orbits but different phases as a compari-
son of Figs. 9�b� and 9�c� shows. Outside of the defect zone,
period-2 behavior is observed �Fig. 9�d��.

In this quasiperiodic regime for k2=1.540, the time-
average method described in the Introduction �Eq. �2�� yields
a “wiggly” line defect with regular sinusoidal modulation
�16�. However, points on the wiggly defect line no longer
have identical local dynamics similar to that for the simple
curved line defect observed at smaller k2. The method simply
finds the positions of the approximately period-1 time slices
in the time series, indicated by the arrows in Fig. 9. The line
defect is best represented as a defect zone, within which

there is complex quasiperiodic temporal dynamics, which
separates simple period-2 behavior with a 2� phase shift
across the defect zone. Equation �14� predicts the mean po-
sition of the defect zone which is shown as the simple curve
in Figs. 8�a� and 8�b� with P=27.3 and �=0.0029. Our the-
oretical description of the line defect shape remains valid for
the mean location of this defect zone, since it simply relies
on the Archimedean structure of the spiral, which still holds,
and the 2� phase jumps across the zone. Note, the core in
Fig. 8�a� remains limited to a small region around the tip
whose size is not discernibly different from that in Fig. 3�a�
at k=1.430.

The entire bifurcation structure as a function of k2 can be
summarized as follows. For k2�1.530, the line defect is a
simple curve such as that in Fig. 1�b� whose form is pre-
dicted by our model and points in the defect zone execute
periodic motion. For 1.534�k2�1.543 all points in the de-
fect zone execute quasiperiodic motion whose detailed struc-
ture was examined in Fig. 9. Our model is able to predict the
midline of the defect zone in this case �see Fig. 8�a��. For
1.530�k2�1.534, a hybrid behavior, where periodic behav-
ior far from the spiral tip is combined with quasiperiodic
dynamics near the tip, is found. For k�1.543, chaotic be-
havior with an irregular character develops within the defect
zone.

IV. DISCUSSION

The results presented in this paper show that the
Archimedean splay state model can be used to predict the

FIG. 8. �Color online� �a� Snapshot of the cz�r� at one time
instant for a larger value k2=1.540 with the so called “wiggling”
line with an oscillatory structure and our prediction curve. �b� Four
typical points �open circles� around the defect zone are selected to
study the dynamics. �c� Plot of ���� versus �. Even with the quasi-
periodic behavior appearing within the defect region the same de-
fect zone structure as Fig. 2 appears.

FIG. 9. From bottom to top: Time series cz�t� of four typical
spatial points �see Fig. 8�b��, a, b, c, and d, respectively. Arrows
show the positions of local approximately period-1 motions.
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shape of the line defect in complex-oscillatory domains of
model reaction-diffusion systems. However, a number of as-
pects line defect structure remain to be investigated. A full
theoretical description of the line defect structure must be
based on a rigorous bifurcation analysis of period-doubling
in spiral wave systems and work in this direction is being
pursued �27�.

In experiments on the Belousov-Zhabotinsky reaction, a
number of different line defect structures have been ob-
served. In particular Park and Lee �15� found stationary line
defects with spiral and curved shapes and also situations
where the core of the spiral to which the line defect is at-
tached executed a meandering motion like that seen in excit-
able media �2�. These phenomena are richer than those seen
in studies of line defects on simple three-variable reaction-
diffusion models such as the WR and Rössler models, with
one exception. In Ref. �11� a line defect with spiral shape
was found for the WR model �see Fig. 8 of this paper� in the
regime where the system has locally chaotic dynamics. Due
to the large value of the coupling strength D=100 used in
Ref. �11�, in contrast to D=0.2 in the present paper, the ob-
served spiral line defect in �11�, in fact, lies within the core
region. For this system, the spiral line defect may be a spiral
core effect and the prediction of its shape is beyond the
scope of our model. Our theoretical expression for the line
defect shape relies on fairly generic properties, such as the
Archimedean nature of the underlying spiral wave and the
2� phase jump across the defect zone. It is able to reproduce
the simulation results on model reaction-diffusion systems
with period-doubling cascades outside the core region.

Park and Lee �15� also observed that the spiral core be-
gins to move when the period-2 regime is entered. It initially
undergoes simple circular motion which develops into
“flower” patterns, simlar to those observed in excitable me-
dia, as parameters are tuned. Simulations on the Rössler and
WR models show a somewhat different behavior �13�. Again,
as in the experiments, the core is stationary before entering
the period-2 regime and begins to move at the period-2 bi-

furcation point. However, the motion is ballistic with a very
small velocity and the shape of the line defect, which re-
mains at a fixed angle to the direction of the straight-line
motion, is constant. Our theory is applicable to this case by
working in frame moving with the constant velocity of the
spiral point defect at the core. It is possible, as suggested by
Park and Lee, that more complex models that incorporate
details of the BZ kinetics and reproduce the bifurcations seen
in this reacting system need to be constructed to capture
these effects. Thus, while our theoretical model for the shape
of the line defect does fit the simulation data for the generic
WR and Rössler models that show a period-doubling cas-
cade, in the absence of a suitable model that exhibits spiral-
shaped line defects, it is not possible for us to investigate
their structure.

Guo et al. �17� observed that three-dimensional effects
can also play a role and lead to new features for both the
structure and dynamics of line defects. Such phenomena are
outside the scope of our two-dimensional simulations and
model theory.

In summary, the Archimedean splay state model can be
used to predict shapes of line defects for model reaction-
diffusion systems, a feature that was lacking in earlier inves-
tigations of these systems. The conditions for the validity of
our model are simple and easy to test, and the results accu-
rately describe the simulations on model reaction-diffusion
systems exhibiting a period-doubling cascade, although chal-
lenges remain for future studies of models with possibly
more complex bifurcation structure. The results presented in
this paper provide insight into the line defect phenomenon
whose study, both experimentally and theoretically, is at an
early stage.
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